Showing posts with label NAT. Show all posts
Showing posts with label NAT. Show all posts

Thursday, 27 November 2014

Introducing the ASA

Meet the ASA


Finally the time has come for us to talk about a dedicated firewall device.  The ASA has been around for a long time, although it has often been called the PIX firewall.

There are a number of different hardware models of the ASA, however the all behave pretty much exactly the same, with the exception of the 5505.  The 5505 has an inbuilt switch model and uses VLANs rather than physical interfaces for its IP addressing and configuration.  However all the same principles apply.  The 5510 up to the 5585 gradually move up in terms of capacity but for all intents and purposes can be treated the same, there also exists the Firewall Services Module which is a blade which can be plugged in to a compatible switch.

I won’t go into all the features which the ASA supports, but it has all the features you would expect from an enterprise firewall.

The basics


The ASA uses the concepts of security levels which are assigned to interfaces.  The security level is a number between 0 and 100 and correlates to the trust you would place in that network.  By default, an interface labelled ‘inside’ will have the security level 100 while an interface labelled ‘outside’ will have the security level 0.  By default (and this is very important) if a packet is coming from a higher security level interface than it is destined for (eg, going from inside to outside) that traffic will be permitted even with no matching access-list.  However the inverse of this is also true, any traffic going from a lower security to a higher security interface will be blocked.  We also need to remember, that just like an IOS router, there is an implicit deny at the end of every access list, so if there are no matching permit statements that traffic will be dropped.

Let’s get into the fun stuff, we’re going to remove our central router and replace it with an ASA.  We’re going to playing with a 5520 running version 8.4(2) so if you’re using a 5505 at home then the commands will differ slightly, however the theory behind them remains the same.










ciscoasa(config)# hostname CentralFW
CentralFW(config)# int g2
CentralFW(config-if)# ip address 192.168.21.1 255.255.255.0
CentralFW(config-if)# nameif inside
INFO: Security level for "inside" set to 100 by default.
CentralFW(config-if)# no shut
CentralFW(config-if)# int g1
CentralFW(config-if)# ip address 172.16.31.1 255.255.255.0
CentralFW(config-if)# nameif dmz
INFO: Security level for "dmz" set to 0 by default.
CentralFW(config-if)# security-level 50
CentralFW(config-if)# no shut
CentralFW(config-if)# int g0
CentralFW(config-if)# ip address 45.45.45.1 255.255.255.0
CentralFW(config-if)# nameif outside
INFO: Security level for "outside" set to 0 by default.
CentralFW(config-if)# no shut


We can also configure the ASA to act as a DHCP server, so first let’s change the configuration of our internal device to receive their IP addresses automatically.
InternalRTR(config)#int f0/0
InternalRTR(config-if)#no ip address 192.168.21.20 255.255.255.0
InternalRTR(config-if)#ip address dhcp

CentralFW(config)# dhcpd address 192.168.21.10-192.168.21.50 inside
CentralFW(config)# dhcpd enable inside


If we go back to InternalRTR now and check it’s IP address:

InternalRTR#show ip int br
Interface                  IP-Address      OK? Method Status                Protocol
FastEthernet0/0            192.168.21.10   YES DHCP   up                    up


We also need to define routing just like a router, so let’s define a static route to the internet:

CentralFW(config)# route outside 0.0.0.0 0.0.0.0 45.45.45.20

NAT


NAT is where things can get very confusing on the ASA.  When Cisco released version 8.3 they completely rewrote the way NAT is configured on the firewall.  Whilst you will be expected to know how to configure NAT on a pre 8.3 device, this blog will go over NAT configuration on the newer devices.
We want to set up NAT like we did earlier, so that when hosts on the inside access hosts on the outside, they are translated to the external interface of the firewall.

CentralFW(config)# object network InternalNet
CentralFW(config-network-object)# subnet 192.168.21.0 255.255.255.0
CentralFW(config-network-object)# nat (inside,outside) static interface


Let’s setup an SSH session from inside to outside again to verify it is working:

ExternalRTR#show users
    Line       User       Host(s)              Idle       Location
*  2 vty 0     admin      idle                 00:00:00 45.45.45.1


Note: on a pre 8.3 ASA instead of defining the NAT as part of the object group – we would define it as line like this:

nat (inside,outside) 1 source dynamic InternalNet interface

Now we’re going to want to define some access-lists to lock down this traffic a bit better than it is currently.

CentralFW(config)# access-list inside_to_outside extended permit tcp object InternalNet any eq ssh log
CentralFW(config)# access-group inside_to_outside in interface inside


We need to be very clear with what we are permitting now, because now that we have defined an access-list for traffic entering the inside interface, all traffic that is not explicitly permitted will be dropped.

One of the great tools that comes with the ASA is the packet-tracer command which allows us to simulate traffic and see the processing steps the firewall would take as if it were a real packet.  Lets try it for ssh traffic (which will be allowed) and http traffic (which will be dropped).

CentralFW# packet-tracer input inside tcp 192.168.21.10 5342 45.45.45.20 ssh detailed

Phase: 1
Type: ROUTE-LOOKUP
Subtype: input
Result: ALLOW
Config:
Additional Information:
in   45.45.45.0      255.255.255.0   outside

Phase: 2
Type: ACCESS-LIST
Subtype: log
Result: ALLOW
Config:
access-group inside_to_outside in interface inside
access-list inside_to_outside extended permit tcp object InternalNet any eq ssh log
Additional Information:
 Forward Flow based lookup yields rule:
 in  id=0xbc3236e0, priority=13, domain=permit, deny=false
        hits=0, user_data=0xb9466b40, cs_id=0x0, use_real_addr, flags=0x0, protocol=6
        src ip/id=192.168.21.0, mask=255.255.255.0, port=0
        dst ip/id=0.0.0.0, mask=0.0.0.0, port=22, dscp=0x0
        input_ifc=inside, output_ifc=any

Phase: 3
Type: IP-OPTIONS
Subtype:
Result: ALLOW
Config:
Additional Information:
 Forward Flow based lookup yields rule:
 in  id=0xbc2a6700, priority=0, domain=inspect-ip-options, deny=true
        hits=12, user_data=0x0, cs_id=0x0, reverse, flags=0x0, protocol=0
        src ip/id=0.0.0.0, mask=0.0.0.0, port=0
        dst ip/id=0.0.0.0, mask=0.0.0.0, port=0, dscp=0x0
        input_ifc=inside, output_ifc=any

Phase: 4
Type: NAT
Subtype:
Result: ALLOW
Config:
object network InternalNet
 nat (inside,outside) static interface
Additional Information:
Static translate 192.168.21.10/5342 to 45.45.45.1/5342
 Forward Flow based lookup yields rule:
 in  id=0xbc3215e0, priority=6, domain=nat, deny=false
        hits=2, user_data=0xbc3116c8, cs_id=0x0, use_real_addr, flags=0x0, protocol=0
        src ip/id=192.168.21.0, mask=255.255.255.0, port=0
        dst ip/id=0.0.0.0, mask=0.0.0.0, port=0, dscp=0x0
        input_ifc=inside, output_ifc=outside

Phase: 5
Type: IP-OPTIONS
Subtype:
Result: ALLOW
Config:
Additional Information:
 Reverse Flow based lookup yields rule:
 in  id=0xbc3055c8, priority=0, domain=inspect-ip-options, deny=true
        hits=4, user_data=0x0, cs_id=0x0, reverse, flags=0x0, protocol=0
        src ip/id=0.0.0.0, mask=0.0.0.0, port=0
        dst ip/id=0.0.0.0, mask=0.0.0.0, port=0, dscp=0x0
        input_ifc=outside, output_ifc=any

Phase: 6
Type: FLOW-CREATION
Subtype:
Result: ALLOW
Config:
Additional Information:
New flow created with id 13, packet dispatched to next module
Module information for forward flow ...
snp_fp_tracer_drop
snp_fp_inspect_ip_options
snp_fp_tcp_normalizer
snp_fp_translate
snp_fp_adjacency
snp_fp_fragment
snp_ifc_stat

Module information for reverse flow ...
snp_fp_tracer_drop
snp_fp_inspect_ip_options
snp_fp_translate
snp_fp_tcp_normalizer
snp_fp_adjacency
snp_fp_fragment
snp_ifc_stat

Result:
input-interface: inside
input-status: up
input-line-status: up
output-interface: outside
output-status: up
output-line-status: up
Action: allow


This shows all the processing steps the firewall takes on traffic that is coming from 192.168.21.10 to 45.45.45.20 on ssh on the inside interface.  Pay particular attention to Phase 2 and Phase 4, which show the ACL it is hitting, and the NAT rule.  Now let’s try it for http:

CentralFW# packet-tracer input inside tcp 192.168.21.10 5342 45.45.45.20 http detailed

Phase: 1
Type: ROUTE-LOOKUP
Subtype: input
Result: ALLOW
Config:
Additional Information:
in   45.45.45.0      255.255.255.0   outside

Phase: 2
Type: ACCESS-LIST
Subtype:
Result: DROP
Config:
Implicit Rule
Additional Information:
 Forward Flow based lookup yields rule:
 in  id=0xbc323778, priority=11, domain=permit, deny=true
        hits=0, user_data=0x5, cs_id=0x0, flags=0x0, protocol=0
        src ip/id=0.0.0.0, mask=0.0.0.0, port=0
        dst ip/id=0.0.0.0, mask=0.0.0.0, port=0, dscp=0x0
        input_ifc=inside, output_ifc=any

Result:
input-interface: inside
input-status: up
input-line-status: up
output-interface: outside
output-status: up
output-line-status: up
Action: drop
Drop-reason: (acl-drop) Flow is denied by configured rule

Here we see that the traffic is dropped in phase 2, because it is not specified in the ACL.

That’s a basic rundown on how to use an ASA, but of course there’s much more that can be done with them.

IOS Zone-based firewall



When we configure a zone-based firewall, we place interfaces into security zones.  All our policies reference zones instead of interfaces, in this way we can add interfaces to a zone without configuring a whole bunch of new roles.  It’s a fairly common way of implementing a firewall, with Juniper also using the concept of security zones in their SSG and SRX lines. 

Zone-based firewall features:
•    Stateful inspection
•    Application inspection
•    Packet filtering
•    URL filtering
•    Transparent firewall
•    Support for virtual routing ad forwarding (VRF)
•    ACLs are not required as a prerequisite for the policy

Interfaces can only belong to a single zone.  There also exists a self-zone which is used for any traffic destined for the router itself.  Once we place an interface in a zone, no traffic is allowed from that zone to any other zone unless we specifically permit it.  However all traffic is allowed between interfaces in the same zone.  To allow traffic between zones, first we create a zone-pair, which identifies the source and destination zones and applies a policy to traffic which matches that zone pair.

That is all fairly generic information for a zone-based firewall, so let’s see how this works on a Cisco IOS router.

•    Class maps – This is what will identify the traffic.  Traffic can be matched on anything from layer 3 through to layer 7 of the OSI model, and it can refer to ACLs to identify traffic. A class map consists of match statements and can have multiple of those.  We can also set it match all so that all statements have to match, or match-any, in which any of the statements can match.
•    Policy maps – These define the actions that are taken on the traffic.  Policy maps are processed in order.  The most common actions that can be taken are inspect, permit, drop or log.
•    Service policies – Where policies are applied from a policy map to a zone pair.

So let’s go ahead and create some policies apply to our configuration:





First let’s define a class map that will match on management traffic which we will define as telnet, ssh, https and icmp.

R1(config)#class-map type inspect match-any MGMTMAP
R1(config-cmap)#match protocol telnet
R1(config-cmap)#match protocol ssh
R1(config-cmap)#match protocol icmp
R1(config-cmap)#match protocol https


Now we need to define a policy map which calls on this class map.

R1(config)#policy-map type inspect MGMTPOLMAP
R1(config-pmap)#class type inspect MGMTMAP
R1(config-pmap-c)#inspect


Now let’s create our three zones:

R1(config)#zone security internal
R1(config-sec-zone)#exit
R1(config)#zone security external
R1(config-sec-zone)#exit
R1(config)#zone security dmz
R1(config-sec-zone)#exit


Now we need to create a zone-pair and apply a policy map to it:

R1(config)#zone-pair security in-to-dmz source internal destination dmz
R1(config-sec-zone-pair)#service-policy type inspect MGMTPOLMAP


The last step we need to configure is to place the interfaces in their correct zones:

R1(config)#int g2/0
R1(config-if)#zone-member security internal
R1(config-if)#exit
R1(config)#int f1/0
R1(config-if)#zone-member security dmz
R1(config-if)#exit
R1(config)#int f0/0
R1(config-if)#zone-member security external


What we have created here is to allow the internal network to access the DMZ only on telnet, ssh, https and icmp, so let’s give it a test: (note that I’ve changed to using routers in GNS3 to act as end devices, Virtualbox was killing my machine!)

InternalRTR#ping 172.16.31.20

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.31.20, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 32/65/164 ms


InternalRTR#telnet 172.16.31.20 80
Trying 172.16.31.20, 80 ...
% Connection timed out; remote host not responding

InternalRTR#telnet 172.16.31.20
Trying 172.16.31.20 ... Open



We can see that ICMP and telnet are being allowed through, but port 80 is blocked.

We can also run a debug on the router to verify it is being blocked:

*Nov 27 10:41:58.151: FIREWALL*: NEW PAK 67181CE0 (0:192.168.21.20:52467) (0:172.16.31.20:80) tcp
*Nov 27 10:41:58.151: FIREWALL*: DROP feature object 0xAAAA0005 found
*Nov 27 10:41:43.247: FIREWALL* sis 67EF6240: L4 result: PASS packet 0x67181CE0 (192.168.21.20:22967) (172.16.31.
R1#20:22) bytes 24



Note that because we have not defined a zone-pair between the inside and outside networks, all traffic is allowed at this stage.  We would need to follow a similar process to above to lock that down.  There is a slight difference with the self-zone, where even if we define a zone-pair but have no policy in it, traffic will be allowed between the self-zone and any other zone, however with two regular zones, if we have a zone-pair defined with no policy then all traffic will be dropped.
We can also create all of this using the Cisco Configuration Professional interface; however I won’t be going into any of that configuration here.  You can download the software from Cisco with a valid

So now let’s finish off this by securing the firewall to have the same access as we configured with the access-lists in an earlier post.

To recap this is the access to be allowed:

•    Everyone on the internal network can access the Internet for web browsing
•    Everyone on the internal network can access the DMZ but only for management (SSH, HTTPS and RDP)
•    Everyone on the internet can only access the web server (172.16.31.20) but only on HTTP and HTTPS

So far we have configured access from the internal network to the DMZ for ssh, https, telnet and icmp so we need to change that configuration slightly.

R1(config)#class-map type inspect match-any MGMTMAP
R1(config-cmap)#no match protocol telnet
R1(config-cmap)#no match protocol icmp
R1(config)#ip access-list extended RDP
R1(config-ext-nacl)#permit tcp any any eq 3389
R1(config)#class-map type inspect MGMTMAP
R1(config-cmap)#match access-group name RDP


Now we should access from the internal to the DMZ locked down to just SSH, HTTPS and RDP:

*Nov 27 12:55:42.475: FIREWALL*: NEW PAK 67181CE0 (0:192.168.21.20:54688) (0:172.16.31.20:23) tcp
*Nov 27 12:55:42.475: FIREWALL*: DROP feature object 0xAAAA0005 found

*Nov 27 12:56:07.395: FIREWALL* sis 67EF6560: Pak 0x66F549FC IP: s=172.16.31.20 (FastEthernet1/0), d=192.168.21.20 (GigabitEthernet2/0), len 20, proto=tcp
*Nov 27 12:56:07.395: FIREWALL* sis 67EF6560: L4 result: PASS packet 0x66F549FC (172.16.31.20:3389) (192.168.21.20:11910) bytes 20


Let’s lock down our access for the outside now.  Everyone should be able to access the web server, but only on http and https

R1(config)#ip access-list extended WEBACL
R1(config-ext-nacl)#permit ip any host 172.16.31.20

R1(config)#class-map type inspect match-any WEBMAPPORTS
R1(config-cmap)#match protocol http
R1(config-cmap)#match protocol https
R1(config-cmap)#exit
R1(config)#class-map type inspect match-all WEBMAP
R1(config-cmap)#match class-map WEBMAPPORTS
R1(config-cmap)#match access-group name WEBACL
R1(config-cmap)#exit
R1(config)#policy-map type inspect WEBPOLMAP
R1(config-pmap)#class type inspect WEBMAP
R1(config-pmap-c)#inspect

R1(config)#zone-pair security out-to-dmz source external destination dmz
R1(config-sec-zone-pair)#service-policy type inspect WEBPOLMAP


If we run through what we do above, we create an access-list only allowing traffic to the destination 172.16.31.20.  Then we create a class map that will match on either http and https traffic.  Now we create another class-map that will only match on both the destination IP and ports.  The policy map then inspects that class map, and in turn the zone-pair inspects that policy map.

*Nov 27 14:27:03.839: FIREWALL* sis 675C3AA0: L4 result: PASS packet 0x66F549FC (172.16.31.20:80) (45.45.45.20:47585) bytes 20
*Nov 27 14:27:49.383: FIREWALL*: NEW PAK 66F54590 (0:45.45.45.20:30237) (0:172.16.31.20:22) tcp
*Nov 27 14:27:49.383: FIREWALL*: DROP feature object 0xAAAA000C found


Looks like our configuration is working – port 80 is accessible from the outside, but port 22 is blocked.

We can also use some show commands to have a look at what is happening on the firewall:

R1#show class-map type inspect
 Class Map type inspect match-all WEBMAP (id 11)
   Match class-map WEBMAPPORTS
   Match access-group name WEBACL

 Class Map type inspect match-any WEBMAPPORTS (id 10)
   Match protocol http
   Match protocol https

 Class Map type inspect match-any MGMTMAP (id 1)
   Match protocol ssh
   Match protocol https
   Match access-group name RDP


Note – I set up an SSH session from my internal device to my external device and then issued this command:

R1#show policy-map type inspect zone-pair in-to-dmz sessions

policy exists on zp in-to-dmz
 Zone-pair: in-to-dmz

  Service-policy inspect : MGMTPOLMAP

    Class-map: MGMTMAP (match-any)
      Match: protocol ssh
        2 packets, 48 bytes
        30 second rate 0 bps
      Match: protocol https
        0 packets, 0 bytes
        30 second rate 0 bps
      Match: access-group name RDP
        0 packets, 0 bytes
        30 second rate 0 bps

   Inspect

      Number of Established Sessions = 1
      Established Sessions
        Session 675C4720 (192.168.21.20:40743)=>(172.16.31.20:22) ssh:tcp SIS_OPEN
          Created 00:00:39, Last heard 00:00:33
          Bytes sent (initiator:responder) [251:403]


    Class-map: class-default (match-any)
      Match: any
      Drop
        2 packets, 48 bytes




The last thing to configure for this post is to get some NAT going.  We haven’t set up anything for internal to external, so let’s configure it so that any host on the internal can get to any host on the outside network, but we’re only going to allow ssh, http, https, pop3, smtp and imap.

We’ll follow exactly the same process as before, class-map, policy-map, zone-pair.  We’ll add the NAT right at the end.

R1(config)#class-map type inspect match-any INTOOUTMAP
R1(config-cmap)#match protocol http
R1(config-cmap)#match protocol https
R1(config-cmap)#match protocol ssh
R1(config-cmap)#match protocol smtp
R1(config-cmap)#match protocol imap
R1(config-cmap)#match protocol pop3

R1(config)#policy-map type inspect INTOOUTPOLMAP
R1(config-pmap)#class type inspect INTOOUTMAP
R1(config-pmap-c)#inspect

R1(config)#zone-pair security IN_TO_OUT source internal destination external
R1(config-sec-zone-pair)#service-policy type inspect INTOOUTPOLMAP


That should be enough to enable the ports out that we would like, now we just need to add the NAT configuration:

R1(config)#access-list 10 permit 192.168.21.0 0.0.0.255
R1(config-if)#int fa0/0
R1(config-if)#ip nat outside
R1(config)#int g2/0
R1(config-if)#ip nat inside
R1(config)#ip nat inside source list 10 interface fa0/0 overload


Now we should be able to ssh from our internal network to our external network and when it passes the router it should be translated to the outside interface of the router.  Let’s give it a go:

R1#show policy-map type inspect zone-pair IN_TO_OUT sessions

policy exists on zp IN_TO_OUT
 Zone-pair: IN_TO_OUT

  Service-policy inspect : INTOOUTPOLMAP

    Class-map: INTOOUTMAP (match-any)
      Match: protocol http
        1 packets, 24 bytes
        30 second rate 0 bps
      Match: protocol https
        0 packets, 0 bytes
        30 second rate 0 bps
      Match: protocol ssh
        1 packets, 24 bytes
        30 second rate 0 bps
      Match: protocol smtp
        0 packets, 0 bytes
        30 second rate 0 bps
      Match: protocol imap
        0 packets, 0 bytes
        30 second rate 0 bps
      Match: protocol pop3
        0 packets, 0 bytes
        30 second rate 0 bps

   Inspect

      Number of Established Sessions = 1
      Established Sessions
        Session 675C4D60 (192.168.21.20:64953)=>(45.45.45.20:22) ssh:tcp SIS_OPEN
          Created 00:00:56, Last heard 00:00:14
          Bytes sent (initiator:responder) [419:4351]


    Class-map: class-default (match-any)
      Match: any
      Drop
        13 packets, 592 bytes


Looks like it’s working as we’d expect, and indeed the SSH session is working from that router.  Now let’s verify the NAT:

R1#show ip nat translations
Pro Inside global           Inside local                 Outside local         Outside global
tcp 45.45.45.1:64953   192.168.21.20:64953 45.45.45.20:22    45.45.45.20:22


We can see that the Inside local address is 192.168.21.20 which is the address of the internal device, and the inside global address is 45.45.45.1 which is the ip address of the central router’s external interface, so the NAT is indeed working.

One final check is to see what the external router is seeing:

ExternalRTR#show users
    Line       User       Host(s)              Idle       Location
*  0 con 0                idle                 00:00:00
   2 vty 0     admin      idle                 00:03:01 45.45.45.1


It shows the user admin is logged on from 45.45.45.1, so it’s all working perfectly.

Well that was a fairly lengthy post, but it gives us some great practical knowledge on zone-based firewall.  Next up we’re moving to the ASA.